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On the glug-glug of ideal bottles
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UMR 6594, 49 rue F. Joliot Curie, BP 146, 13384 Marseille, France

(Received 15 July 2003 and in revised form 22 February 2004)

We present an experimental study of the emptying of an ideal vertical bottle under
gravity g. The idealization reduces the bottle to a cylinder of diameter D0, length
L, closed at the top and open at the bottom through a circular thin-walled hole of
diameter d , on the axis of the cylinder. The study is performed in the low-viscosity
limit. The oscillatory emptying of the ‘bottle’ is referred to as the glug-glug, and is
characterized by its period T , whereas the whole emptying process is characterized
by a time Te. Concerning the long time scale Te, we show that:

Te

Te0

=

(
D0

d

)5/2

,

where Te0 ≈ 3.0L/
√

gD0 is the emptying time of an unrestricted cylinder. On the
short time scale T , we show that the physical origin of the oscillations lies in the
compressibility of the surrounding gas. The period can be written as:

T =
L√

γP0/ρ
Φ(z̄i/L),

where γ is the ratio of specific heats of the gas, P0 its pressure and ρ stands for the
density of the liquid. The function Φ is dimensionless and changes with the relative
position of the liquid interface z̄i/L. Finally, this analysis of time scales involved in
the emptying of vertical cylinders is applied to other liquid–gas oscillators.

1. Introduction
An image of life is a return to the thermodynamic equilibrium of death via the

oscillations of our heartbeats. For the particular case of humans, the ratio of the long
time scale of life to the short time scale of the heart beat is of the order of 2 × 109.†
All living creatures follow the same rule with different ratios, and so do the following
Clepsydrae. The common experience of the emptying of a vertical bottle initially full
of liquid, surrounded by air, and submitted to the acceleration due to gravity g,
reveals that the liquid flows out of the bottle through an alternating succession of jets
of liquid and admissions of air bubbles. This oscillatory path back to the equilibrium
is referred to by the onomatopoeic glug-glug and is characterized by the period of the
oscillations T . This oscillatory behaviour starts at the opening and continues until the
bottle is empty, that is all along the emptying time, or lifetime Te. An example of such
behaviour is presented in figure 1. Figure 1(a) shows the geometrical characteristics of
the bottle and figures 1(b) and 1(c) show the evolution of the apparent weight of the

† According to Calder (1984), the ratio (life span)/(cardiac cycle) for mammals of mass M is of
the order of 2.5 × 109 M−0.05. For birds, this ratio scales as 2.32 × 109 M−0.04.
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Figure 1. Example of bottle emptying obtained with ethanol: (a) geometrical characteristics
of the bottle; (b) general evolution of the dynamic weight; (c) detailed evolution of the weight.

bottle, obtained during the emptying using a strain gauge sensor. We first observe in
figure 1(b), that the order of magnitude of the emptying time is Te ≈ 10 s. Despite the
oscillations, we also observe in this figure that the suspended mass decreases almost
linearly in time. Figure 1(c) provides a close view of the evolution of the signal in the
time zone t ∈ [4 s, 5 s]. This zoom, reveals that the apparent weight oscillates with a
characteristic frequency 1/T ≈ 14 Hz that is T ≈ 0.07 s. The life of this bottle can thus
be characterized by the ratio Te/T ≈ 140.

To understand the physical laws governing the existence of this system, we first
reduce the problem to the emptying of a vertical cylinder of diameter D0 and length
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L, closed at the top and open at the bottom through a circular thin-walled hole of
diameter d , on the axis of the cylinder. The cylinder being initially filled with a liquid
of density ρ, viscosity ν and surface tension with the surrounding air σ . At t = 0 we
open the hole d and look for the laws governing both Te and T as a function of the
interface location zi (see figure 3). The problem can formally be written:

Te = F (GP, PC), T = G (GP, PC), (1.1)

where GP stand for the geometrical properties (GP = {L, D0, d, zi}) and PC for the
physical characteristics (PC= {g, ρ, ν, σ, β}), were β ≡ 1/ρ (∂ρ/∂P )s is the compres-
sibility of the surrounding gas at constant entropy. To define the precise domain
of our investigation embedded in this huge parameter space, several preli-
minary remarks are required.

Since the pioneering work of Dumitrescu (1943), cited by Prandtl (1952), much
work has been devoted to the singular limit d = D0, where a long bubble of diameter
D0 is observed rising with the constant velocity Ub ≈ 0.33

√
gD0. In this limit, no

oscillations are observed and the emptying time is straightforward: Te0 ≈ 3.0L/
√

gD0.
For holes of diameters smaller than but of the order of D0, we first observe such a
large bubble rising to the top prior to the onset of the oscillations. For diameters
d � D0/2, the oscillations start from the opening.

Among the different studies devoted to the limit d = D0, the careful experimental
work of Zukoski (1966) shows that the above velocity Ub holds, provided viscous
and surface-tension effects can be neglected. More precisely, Zukoski finds that
viscosity alters Ub if the Reynolds number Re ≡ UbD0/ν is smaller than 100. Using
the expression Ub ≈ 0.33

√
gD0, the above limit can be expressed as a function of the

length ratio D0/lν > 45, where lν ≡ (ν2/g)1/3 is the viscous length. In the case of water,
lν ≈ 46 µm and the non-viscous regime is obtained for D0 > 2mm.

Concerning the effect of surface tension, Zukoski shows experimentally that this
effect is negligible if the diameter of the tube is larger than D0 � 4.5a, where a is
the capillary length of the liquid, defined as a ≡

√
2σ/(ρg). If the diameter of the

tube becomes smaller than this limit, the velocity of the bubble decreases until the
point D0 ≈ 1.9a, where the flow of the liquid out of the tube is prevented by capillary
effects. In the case of water, a ≈ 3.8 mm, and the critical diameter under which the
emptying time tends to infinity is D0c ≈ 7.2 mm.

Our study is conducted in the non-viscous limit 45 lν < 1.9 a, that is, with liquids
characterized by a Kapitsa number Ka =(ρ3gν4/σ 3)1/6 < 0.06. Using these fluids, the
diameter ratio d/D0 is kept in the domain [D0c, D0]. The domain of our investigation
H , is summarized in figure 2 in the plane of (d/D0, Ka).

Because of industrial applications, several studies have already been devoted to
bottle emptying, a review of which can be found in Dukler & Fabre (1994) and
Fabre & Line (1992). Most of these studies relate the rising velocity of the gas
phase Ub to the opening diameter d through a relation of the form Ub = C

√
gd , and

investigate the behaviour of the coefficient C with the geometry of the neck, the ratio
of the gas to liquid density, and the nature of the liquid. Concerning the short time
scale, even if sandclock intermittencies have been studied in granular science (Bideau,
Madani & Hansen 1994; Le Pennee et al. 1994), to our knowledge, the characteristics
of the oscillations in ‘liquid-clocks’ such as the glug-glug have never been studied.

In § 2, we present the experimental set-up. The results obtained are discussed in § 3,
and modelled in § 4. The ideas developed are applied to other pulsating clepsydrae in
§ 5 conclusions are given in § 6.
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Figure 2. Investigation domain.

2. Experimental set-up
The experimental set-up used to measure the long time of emptying, Te, and the

short time of the oscillation, T , is presented in figure 3(a). The Newtonian liquid
is initially contained in the tank whose pressure is kept equal to the atmospheric
pressure through large openings. The door being initially closed, we open the valves
1 and 2 and fill the tube using a pump. Once the tube is filled, the pump is stopped,
the two valves are closed, and the lower door is opened quickly at t = 0.

As the liquid starts to flow out of the tube, the CCD camera records the trajectory
of the upper interface, while the pressure sensor shows the pressure fluctuations in
the upper gas volume. In other words, the CCD camera provides information on the
long time scale while the pressure sensor focuses on the short time scale. Both devices
are synchronized by the TTL pulse that triggers simultaneously the laser beam seen
by the camera and the acquisition of the pressure signal.

The experimental way to approach the functions F and G presented in § 1 is to vary
the variables (GP, PC) independently over as large a range as possible. The geome-
trical properties GP = {L, D0, d, zi}, were changed using holes of different diameters
and three tubes. All the reported experiments were conducted using a thin-walled hole
with an edge angle, α = 20◦ (figure 3c). The diameters, d , are members of the fam-
ily d(mm) ∈ [174, 132.9, 101.5, 77.5, 59.2, 45.2, 34.5, 26.4, 20.1, 15.35, 12.4, 11.7, 10, 9].
The ‘quasi’ power-law evolution of the diameters simplifies the identification of an
eventual power law dependency on d . Concerning the variation of the length L,
and of the diameter D0, we have used three different cylinders whose properties are
summarized in table 1. This tube selection enables an independent variation of the
diameter (tubes 1 and 3) and of the length (tubes 2 and 3), the aspect ratio being
the same for tubes 1 and 2 and being multiplied by two between tubes 1 and 3. The
physical characteristics PC= {ρ, ν, σ, g, β}, were changed using liquids of different
properties: water, ethanol and a mixture water + glycerol. Their properties are
summarized in table 2, where the last two columns present the capillary length and
the Kapitsa number. The parameters g and β are constant in all the experiments,
g = 9.81 m s−2 and β = 1/(γP0), where γ = 1.4 for air and P0 is the ambient pressure.
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Figure 3. Experimental set-up: (a) general principle of the apparatus, (b) schema and
orientation of axes, (c) close-up view of the hole.

Tube L (m) D0 (m) L/D0

1 1.75 0.174 10.05
2 0.865 0.0789 10.96
3 1.75 0.0789 22.18

Table 1. Geometrical characteristics of the tubes.

Fluid ρ(kgm−3) ν (m2 s−1) σ (kg s−2) a (m) Ka

Water 1000 10−6 0.073 3.8 × 10−3 0.017
Ethanol 810 1.5 × 10−6 0.025 2.5 × 10−3 0.034
Water + glycerol 1050 3.5 × 10−6 0.070 3.7 × 10−3 0.057

Table 2. Physical properties of water, ethanol and water + glycerol at 22 ◦C.
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Figure 4. Examples of pictures treated to extract the interface location zi: (a) tube 2 with
water and d = 34.5 mm; (b) tube 2 with water and d = 10 mm.

3. Experimental results
3.1. On the long time scale Te

Two representative examples of images treated to extract the interface location,
zi , are presented in figure 4. For all hole diameters, the upper interface is well
defined and the experimental error associated with this measurement is small
(� 1%).

Using the notation and axis orientations presented in figure 3(b), we first present
the experimental results obtained on the long time scale, Te. Using tube 1 with
water, the typical time evolution of the upper interface is presented in figure 5(a),
with the initial condition, zi(t = 0) = 0. Despite some acceleration towards the end
of the process, it can be seen that the interface is characterized by a quasi-
constant speed over most of the emptying. This velocity decreases as the diameter
of the hole, d , decreases. Typically, the velocity is of the order of 0.3 mm s−1 for
d =10 mm and increases up to 53.5 mm s−1 for d = 77.5 mm. These trajectories can
be compared to those of figure 5(b), obtained in Torricelli’s regime with the same
tube and the same hole diameters but with an open top instead of a closed one.
In Torricelli’s regime, we observe a decelerated trajectory. Apart from the shape of
the trajectory, the comparison between the glug-glug and Torricelli’s regimes reveals
that the emptying time Te is always one order of magnitude larger in the glug-glug
regime.
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Figure 5. Tube 1 and water: trajectory of the upper interface during the emptying, for two
different limit conditions: (a) top closed – glug-glug regime; (b) top opened – Torricelli’s regime,
and different hole diameters: �, d = 10 mm; �, 12.4 mm; �, 15.35mm; �, 20.1 mm; �, 26.4 mm;
�, 34.5 mm; �, 77.5 mm.

d (mm)

Te (s)

100
10–1

100

101

102

103

(a) (b)

104

105

101

Slope = –1.99

Slope = –2.59

102 103

d (mm)
100

101

102

103

104

105

101 102 103

Figure 6. (a) Tube 1 and water: emptying time Te as a function of the hole diameter
d mm, �, glug-glug regime; �, Torricelli’s regime. (b) glug-glug regime with water: �, tube 1;
�, tube 2; �, tube 3.

Figure 6(a) presents the emptying time, Te, as a function of the diameter of the hole,
d , for tube 1 and water in the two previous regimes. The striking feature is the power
law dependency on d in both regimes: Te ∝ dα , where α ≈ −2.59 in the glug-glug
regime and α ≈ −1.99 in Torricelli’s regime. This latter result is expected from the
well-known expression for the interface velocity v(zi) = C(d/D0) (d/D0)

2 √
gzi . The

function C(d/D0) together with the asymptotic character of v(zi) has been studied in
Clanet (2000).

It must be emphasized that the diameter of the hole d varies in this figure from
the blocking limit d = D0c ≈ 8 (mm) for water to the tube diameter d =D0. The power
law Te(d) extends over this whole domain, thus suggesting that on the long time scale
Te, the singular limit d = D0 can be considered as governed by the same physics as
smaller diameters.
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Figure 7. Trajectory of the interface zi(t) for two different initial conditions:
�, zi(t = 0) = 0 cm; �, zi(t = 0) = 85 cm.

The influence of the geometry (L, D0) on the emptying time Te in the glug-glug
regime is presented in figure 6(b) for the three different tubes 1, 2 and 3. From
this figure, we conclude that the geometry does not change the power law, but
alters the absolute value of Te, the life time being longer for a cylinder of greater
volume.

The effect of the initial location of the interface zi(t = 0) on its dynamics is presented
in figure 7, where the trajectories obtained, in tube 1 and water, with zi(t = 0) = 0 cm
and zi(t = 0) = 85 cm are reported. This figure shows that neither the linear character
of the trajectory nor the slope of this line is affected by the difference in the initial
condition. There is no memory effect in the physics of the long time scale Te.

Concerning the liquid properties, we present in figure 8, the evolution of the
emptying time Te as a function of the diameter of the hole d , measured in tube 1
with the three different liquids presented in § 2. We observe in this figure that the
emptying time is not sensitive to a change in density, surface tension or viscosity. This
statement holds provided that the diameter of the hole is larger than the capillary
length, and that the Kapitsa number is smaller than unity.

3.2. On the short time scale T

For the short time scale T , the law T = G (GP, PC) is investigated using the unsteady
pressure signal delivered by the piezo-electric sensor located in the gas phase (see
figure 3). A typical signal obtained with tube 2 and water with a 10 mm hole diameter
is presented in figure 9(a) for the initial condition zi(0) = 0 cm. At t =0, the hole is
opened and the oscillations start and continue until t = Te ≈ 570 s. The detail of the
oscillations is presented at different equally spaced times in figures 9(b–e).
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Figure 8. Evolution of the emptying time Te with the diameter of the hole d for different
liquids: �, deionised water; �, water + glycerol; �, ethanol.

First, considering the waveform presented in the different zones, we observe that
the oscillations are almost sinusoidal at the beginning with a clear left–right and
up–down symmetry. As the interface moves down, the oscillations become nonlinear
and figure 9(e) clearly shows that left–right symmetries have been lost. According
to these figures, the nonlinear character of the oscillations increases as the interface
moves closer to the hole. This general feature was observed in all experiments.

Each of the zooms presented in figure 9, reveals that locally, a mean period
of oscillation T can be defined and that period changes on the long time scale.
More precisely in this example, the period of oscillation increases with time from
T (7.5 s) ≈ 0.2 s to T (557.5 s) ≈ 0.38 s with the intermediate values T (202.5 s) ≈ 0.29 s
and T (407.5 s) ≈ 0.32 s.

The evolution of the period of oscillation T , measured in tube 2 with water and
with different holes diameters, is presented in figure 10 as a function of the interface
location zi/L. We first observe in figure 10 that the period of oscillation T is a
function of both the interface location and of the diameter of the hole. The smaller
the diameter d , the larger the period T . We also notice that for diameters larger
than 15 mm, the period increases from zi/L = 0 to zi/L ≈ 0.5 and then decreases
until zi/L ≈ 1. We also observe that the evolution of the period obtained with
d = 26.4 mm is identical to that measured with d = 34.5 mm. The order of magnitude
of the period T obtained with these diameters for zi/L ≈ 0.5 is T ≈ 0.25 s. The
evolution of the period is different for diameters smaller than 15 mm, since the period
always increase from zi/L ≈ 0 to zi/L ≈ 1, with a kind of weak divergence close to
zi/L ≈ 1.
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Figure 9. Pressure signal obtained with tube 2, water and d = 10 mm: (a) whole recorded
signal; (b) zoom in t(s) ∈ [5, 10]; (c) zoom in t(s) ∈ [200, 205]; (d) zoom in t(s) ∈ [405, 410];
(e) zoom in t(s) ∈ [555, 560].

Tube 3 has the same diameter as tube 2 (D0 = 7.89 cm), but twice the length,
L =1.75 m. The evolution of the period T (zi/L) measured in tube 3 with water is
reported in figure 11(a). The period still increases when the diameter of the hole
decreases. For diameters larger than 10 mm, the period is a weak function of the
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Figure 10. Evolution of the period T with the interface location zi , in tube 2 with water
for different diameter of holes: �, d = 9 mm; �, 10 mm; �, 12.4 mm; �, 15.35mm; �, 20 mm;
�, 26.4 mm; �, 34.5 mm.
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Figure 11. Evolution of the period T obtained with water in tube (a) 3 and (b) 1 using
different hole diameters and presented as a function of the interface location zi/L: (a) tube 3
with: �, d = 9 mm; �, 10 mm; �, 11.7 mm; �, 13.5 mm; �, 15.35mm; �, 34.5 mm; (b) tube 1
with: �, d =10mm; �, 12.4 mm; �, 15.35 mm; �, 20 mm, � d = 26.4 mm, � d = 34.5 mm,
� d = 45 mm, � d = 59 mm, 	 d = 77.4 mm.

diameter and presents a maximum T ≈ 0.5 s for zi/L ≈ 0.5. The maximum observed
in similar conditions with tube 2 is T ≈ 0.25 s. Doubling the length thus doubles the
value of this maximum period.
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Figure 12. Evolution of the period of oscillation T obtained with water in tube 1 and
d = 12.4mm. The period is presented as a function of the relative interface location zi/L, for
two different initial conditions: �, zi(t = 0) = 80 cm; �, zi(t = 0) = 0.

Tube 1 has the same length as tube 3 but twice the diameter D0 = 17.4 cm. The
evolution of the period measured with water in tube 1 is presented in figure 11(b)
for different diameters. For diameters d larger than 34.5 mm, the period becomes a
weak function of the diameter with a maximum T ≈ 0.5 s obtained for zi/L ≈ 0.5. As
the diameter is decreased, we observe a strong dependency of the period with the
diameter: for d = 10 mm, the period is T ≈ 1 s at the location zi/L ≈ 0.5. For diameters
smaller than 20 mm, the period does not present any maximum and increases from
zi/L =0 to zi/L = 1.

The effect of the initial location of the interface zi(t = 0) on the oscillations
is presented in figure 12, where the trajectories obtained, in tube 1 and water
(d = 12.4 mm), with zi(t = 0) = 0 cm and zi(t =0) = 80 cm are reported. This figure
shows that the initial condition has no influence on the period T .

The influence of the liquid viscosity on the period T is presented in figure 13(a).
The measurements have been performed in tube 1 with water and the mixture of
water and glycerol are presented in § 2. For the three different holes, the evolution of
the period is similar for both liquids and we conclude that the period is not sensitive
to the liquid viscosity as long as the Kapitsa number remains small. In figure 13(b) we
report the evolution of the period with the interface location, observed in tube 2 using
water and ethanol. We observe that the period obtained with ethanol is systematically
smaller than the period obtained with the same hole with water. The difference for
zi/L =0.5 is of the order of 15%. It will be seen later that this difference arises from
the change in density and not from the change in surface tension.



On the glug-glug of ideal bottles 157

(a) (b)

T (s)

1.2

0.8

1.0

0.4

0.6

0.2

0
zi/L

0.2 0.4 0.6 0.8 1.0

0.5

0.4

0.3

0.2

0.1

0
zi/L

0.2 0.4 0.6 0.8 1.0

Figure 13. Effect of liquid properties. Evolution of the period T with the interface location:
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Figure 14. Model for the emptying time Te: (a) on the short time scale T ; (b) on the
long time scale Te .

4. Models
4.1. On the long time scale Te

To model the dynamics of the liquid interface on the long time scale Te, we assume
that the long and short time scales are decoupled Te/T � 1, so that on the long time
scale, the emptying phenomenon appears as continuous. If α stands for the fraction
of the period T during which air enters the bottle, the incoming volume of air is:
Vair = αT Ubs, where Ub is the characteristic rise velocity of the bubble and s = πd2/4
the surface of the hole (figure 14a). On the long time scale, we can define Vair/T as
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Figure 15. Comparison between the reduced emptying time Te/Te0 and the model,
equation (4.2) presented with a solid line: �, tube 1; �, tube 2; �, tube 3.

the volume of air that enters the tube by unit time. The constraint of constant volume
then implies:

UiD
2
0 = αUbd

2. (4.1)

The velocity of bubbles larger than the capillary length and which rise in a low-
viscosity liquid is known (Harper 1973) to scale as Ub ∝

√
gL, where L is the

characteristic length of the bubble. Davies & Taylor (1950) have shown that for a
large single bubble rising in an infinite medium, Ub ≈ 2/3

√
gR, where R is the radius

of curvature at the apex. Here, we make the assumption that the characteristic length
of the bubbles that enter the tube is d , the diameter of the hole, so that Ub ∝

√
gd .

The emptying time of the tube Te =L/Ui can then be written:

Te

Te0

=

(
D0

d

)5/2

, (4.2)

where Te0 ≈ 3.0L/
√

g.D0 is the emptying time obtained with d =D0 (Dumitrescu 1943;
Davies & Taylor 1950). The comparison between the experimental measurements
performed with water in the three different tubes is presented in figure 15.

The agreement is correct for a diameter range that extends over a decade. The
emptying time can also be written as Te ∝ D2

0L/(d2
√

(gd)). This time is independent
of the liquid properties (ρ, ν, σ ) and for a given diameter of hole d , it increases
with the volume of the bottle ∝ D2

0L. These tendencies are compatible with the
observations reported in § 3.1.

Applying this model to the bottle presented in figure 1, we obtain Te ≈ 10.4 s, which
is close to the observed value Te ≈ 10 s. The present model is also compatible with the
observation of the linear decrease of the mass in time.
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Water and black ink

Coloured water jet

Oil

Figure 16. Experiment conducted with water and low-viscosity oil.

4.2. On the short time scale T

4.2.1. Physical origin of the oscillations

In figure 16, we present the experiment of a liquid sand-clock: it consists in two
cylindrical tubes of equal diameter connected through a central thin-walled hole. The
upper cylinder is initially filled with a liquid denser than the fluid in the lower part.
At t = 0, the hole is opened and the flow starts. If the lower section is initially full
of air, we observe an oscillatory regime, similar to the glug-glug observed in the
tubes presented in § 3.2. In the experiment presented in figure 16, the upper cylinder
is initially filled with coloured water and the lower one with a vegetable oil of low
viscosity (ν ≈ 15 × 10−6 m2 s−1). This oil is incompressible and not miscible with water.
When the hole is opened, we observe a continuous exchange without oscillations, both
liquids sharing the section of the hole.

This experiment shows that the physical origin of the oscillations of the glug-glug
lies in the compressibility of the surrounding gas.

4.2.2. Spring–mass analogy

Prior to a more detailed model, we first propose a mechanical analogy for the
glug-glug. We consider the syringe presented in figure 17(a), where a piston of section
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M M

Figure 17. Mechanical analogy: (a) definition of a spring rigidity (b) mass–spring analogy.

S defines a volume of air S zeq with the pressure Peq . As the piston is moved a
distance δz from its equilibrium position zeq , the pressure in the air changes by
the amount δP such that: δP/Peq = −γ δz/zeq . We have assumed an isentropic trans-
formation. The restoring force which acts on the piston δF = δP S is thus proportional
to the perturbation δz and we can define the rigidity k ≡ γPeqS/zeq such that
δF = −kδz.

We now consider the glug-glug and propose the mass–spring analogy presented in
figure 17(b). According to the syringe argument, k ≡ γP0S/z̄i . The mass of water is
M = ρS (L − z̄i) and the period T = 2π

√
M/k takes the form:

T = 2π
L√

γP0/ρ

√
z̄i

L

(
1 − z̄i

L

)
. (4.3)

The dimension of T results from the ratio of the length L to the speed
√

P0/ρ. This
speed is a combination of the compressibility of the gas and the inertia of the liquid.
In this sense, it resembles the speed of sound in bubbly liquids (van Wijngaarden
1982).

More quantitatively, the linearity between T and L at a given z̄i/L, predicted by
(4.3), is compatible with the observations reported in § 3.2. The period depends on the
fluid properties through

√
ρ and not through the viscosity or surface tension (§ 3.2).

Moreover, the behaviour in z̄i (1 − z̄i) which leads to T = 0 at zi = 0 and zi = L with a
maximum at zi = L/2 is also compatible with the measurements performed with holes
of large diameter. Quantitatively, for L =1.7 m and zi = L/2, we calculate T ≈ 0.45 s,
which is consistant with the observed value T ≈ 0.5 s, obtained again with the large
values of d/D0. Despite these positive tendencies, the above linear model does not
capture the influence of the diameter of the hole on the period of the oscillations,
presented in figure 11.
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Figure 18. Model for the oscillations.

4.2.3. A more detailed model

A more detailed model for the oscillations is presented in figure 18: the cycle starts
at the entrance of a bubble in the tube (figure 18a). The oscillation is then decomposed
into two phases: an outflow of the liquid (figure 18b) and the admission of a new
bubble without liquid flow (figure 18c). Since the emptying time Te is large compared
to the period T , we assume that, during the whole period, the mean position of the
interface z̄i is constant. The actual interface location zi is thus decomposed into a
fixed part z̄i and a time-dependent part z̃i: zi(t) = z̄i + z̃i(t). We expect this model to
be valid as soon as the upper volume of air is larger than the volume of bubbles
contained in the tube†. To describe the motion of the liquid in the tube during the
whole cycle, we use Euler’s equation:

∂U
∂t

+ ∇U · U = − 1

ρ
∇p + g. (4.4)

Projecting (4.4) onto a streamline and integrating between the points A and B,
respectively located on the upper interface and the exit of the tube (see figure 18), we
obtain: ∫ B

A

∂U
∂t

· dl + 1
2

(
U 2

B − U 2
A

)
= − 1

ρ
(PB − PA) + g(L − zi). (4.5)

In this equation, dl represents an element of the streamline. During the cycle, the
mass of air remains almost constant in the upper part of the tube. Since the period of
oscillation (of the order of the second) is short compared to the time of thermal
equilibrium, D2

0/Dth, where Dth is the thermal diffusivity of air, we assume an
isentropic transformation and deduce:

PAV
γ
A = PeqV

γ
eq, (4.6)

† This condition is satisfied when zi > (d/D0)
2 L. Since zi = Uit , we conclude that the model starts

to be valid when t > L/
√

gd . In the limit d < D0 where the glug-glug is studied, this time is much
smaller than the emptying time Te and this condition only affects the first periods of oscillation.
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z
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2

�

Figure 19. Model of the outflow.

where PA and VA represent the pressure and the volume of the air when the interface
is at zi . Peq and Veq have the same meaning but for the equilibrium location and can
be expressed as functions of z̄i:

Veq = 1
4
πD2

0 z̄i , (4.7)

Peq = P0

[
1 − λ

(
1 − z̄i

L

)]
. (4.8)

In (4.8), λ≡ ρgL/P0 measures the maximal equilibrium depression of the air. In our
experiments, λ is a small constant, equal to 0.17 in tubes 1 and 3 and equal to 0.08
in tube 2. From (4.6), we deduce the expression of the pressure at A. The pressure at
B is equal to P0. The right-hand side of (4.5) can be linearized to yield:

− 1

ρ
(PB − PA) + g (L − zi) = −γP0

ρz̄i

z̃iF (λ, z̄i), (4.9)

where F (λ, z̄i) ≡ [1 − λ+ λ(z̄i/L)(1+1/γ )]. In our study, λ is small compared to unity
and F (λ, z̄i) ≈ 1. We now concentrate on the left-hand side of (4.5), considering first
the outflow.

During the outflow (figure 18), the velocity at B is higher than the velocity at A by
the ratio (D0/d)2. We deduce:

1
2

(
U 2

B − U 2
A

)
=

1

2

[(
D0

d

)4

− 1

]
˙̃z2
i . (4.10)

To evaluate the acceleration term
∫ B

A
∂U/∂t · dl, we assume that the flow has the

structure presented in figure 19: the flow is decomposed into two regions, a uniform
region which extends from the interface to a location close to the hole (region 1)
and the second which is close to the hole. In region 1, the flow is approximated by
U ≈ ˙̃ziez. In region 2, we assume a radial sink flow of the type vr =α (D0/r)2 ˙̃zi , where
α is a constant. Using mass conservation we find that region 2 extends from r =

√
αd

(where vr = (D0/d)2 ˙̃zi) to r = 
 =
√

αD0 (where vr = ˙̃zi). This structure of the flow
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leads to: ∫ B

A

U · dl ≈ (L −
√

αD0 − zi)˙̃zi +

∫ √
αD0

√
αd

α

(
D0

r

)2

˙̃zidr, (4.11)

from which we deduce the acceleration term:∫ B

A

∂U
∂t

· dl ≈
[
L − z̄i +

√
α

D2
0

d

(
1 − 2

d

D0

)]
¨̃zi = (L − z̄i + L) ¨̃zi, (4.12)

where the length L ≡
√

αD2
0/d (1 − 2d/D0) accounts for the liquid acceleration at the

hole. The Euler equation, (4.5), during the outflow can thus be written:

(L − z̄i + L) ¨̃zi +
1

2

[(
D0

d

)4

− 1

]
˙̃z2
i +

γP0

ρz̄i

z̃iF (λ, z̄i) = 0. (4.13)

During the entry of the bubble into the tube (figure 18b), we proceed through the
same stages, but with the new condition UB = 0. The strong nonlinear term disappears
in this case and the dynamics of the interface is described by the equation:

¨̃zi(L − z̄i) − 1
2
˙̃z2
i +

γP0

ρz̄i

z̃iF (λ, z̄i) = 0. (4.14)

Since we look for small oscillations around the equilibrium, in both equations we
retain only the linear terms. The dynamics of the interface during the whole cycle is
thus described by the system:

¨̃zi +
γP0

ρL2

F (λ, z̄i)

z̄i/L

1

1 − z̄i/L + L/L
z̃i = 0, (4.15)

¨̃zi +
γP0

ρL2

F (λ, z̄i)

z̄i/L

1

1 − z̄i/L
z̃i = 0, (4.16)

the first equation describing ˙̃zi > 0 and the second ˙̃zi < 0. This linearization of the
problem enables us to find an analytical expression for the period of the oscillations:

T = π
L√

γP0/ρ

√
z̄i/L

F (λ, z̄i)

[√
1 − z̄i/L +

√
1 − z̄i/L +

√
α

D2
0

dL

(
1 − 2

d

D0

)]
. (4.17)

In the limit λ	 1 and D2
0/(dL) 	 1, we recover the period given by the spring–mass

analogy (4.3). To evaluate the value of the free parameter α, we have adjusted
its value in one set of experiments (obtained with tube 1). Using α = 4.8, the
comparison between the period measured experimentally and the period calculated
with (4.17) is presented in figure 20 for the three different tubes, and a range of exit
diameters.

The comparison conducted in tube 1 (figure 20a) first shows that the spring–mass
approximation of the period (4.3) is satisfactory for hole diameters larger than 45 mm.
For smaller diameters, the period increases and the linearized detailed model (4.17)
captures the overall influence of the diameter. The main discrepancies occur when the
interface becomes close to the hole.
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Figure 20. Comparison between the period T measured experimentally and the period
calculated from (4.17) with α =4.8: (a) tube 1: �, d = 10 mm; �, 15.35 mm; �, 26.4 mm;
�, 45.2 mm; �, 77.5 mm; (b) tube 2: �, d = 9 mm; �, 12.4 mm; �, 20.1 mm; �, 34.5 mm;
(c) tube 3: �, d =9mm; �, 11.7 mm; �, 15.35mm; �, 34.5mm; the thin lines are the periods
calculated with (4.17) and the bold line is (4.3).

The same comments can be made for the comparison conducted in tubes 2 and 3
and presented, respectively, in figures 20(b) and 20(c). The spring–mass approximation
captures the evolution of the period for the larger diameters and the linearized detailed
model is reasonably able to follow its evolution for smaller diameters. Again, the main
descrepencies are observed when the interface aproaches the hole.

From experiment, we have noticed in § 3.2, that the difference in the period between
the different diameters increases when D0/d increases and when the interface is
close to zi = L. At the same time, the pressure oscillations in the tube become non-
sinusoidal (see figure 9). From (4.13), both behaviours can be understood as an effect
of the nonlinear term ∝ (D0/d)4 ˙̃z2

i that has been neglected in our linearized analysis.
Better agreement with the experimental results can be obtained through numerical
integration of (4.13) and (4.14).

Applying this model to the bottle presented in figure 1, we obtain the evaluation
T ≈ 0.065 s. We have used the following values in the calculation z̄i/L = 0.5,
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Figure 21. Presentation of two different glug-glugs: (a) tube 4, (b) tube 5.

L = 0.23 m, D = 0.065 m, d = 0.024 m, P0 = 105 Pa and ρ =820 kgm−3. This value of
the period of oscillation is compatible with the measured period, T ≈ 0.07.

5. Two other glug-glugs
The analysis developed for the long and short time scales of the emptying of the

bottle are applied in this section to the configurations presented in figure 21. In tube
4 (figure 21a), two cylinders of diameter D0 = 8 cm and length L =0.86 m are coupled
via a central thin-walled hole of diameter d . The upper cylinder is open at the top
and initially full of liquid. The lower cylinder is closed at the bottom and initially full
of air. At t = 0, the hole is open and the glug-glug starts. At the end of the process,
the lower tube is full and the upper one is empty. Tube 5 (figure 21b) is identical to
tube 4 except that the liquid level in the upper part is kept constant and equal to
Lc = 68 cm. At the end of the process, the lower tube is full and the upper one always
contains water up to Lc.

Considering the long time scale Te, figure 22 presents the evolution of the emptying
time in tubes 2, 4 and 5. In the case of tube 5, Te is the time needed to fill the lower
tube. We observe in figure 22, that for a given diameter of hole, the emptying time is
identical in the three experiments. Since L and D0 are the same for tubes 2, 4 and 5,
this result is expected from the analysis presented in § 4.1.

The evolution of the short time scale T in tube 4 and 5 is presented in figure 23.
For tube 4 (figure 23a), the period decreases almost linearly from 0.5 s down to 0.1 s
as the mean position of the interface moves from z̄i = 0 to z̄i = L. We observe a small
influence of the diameter of the hole: the period increases slightly when the diameter
decreases. If we apply spring–mass analogy to this configuration, we find the rigidity
k ≡ γP0S/ (L − z̄i) and the mass M ≡ ρS (L − z̄i). We deduce the evolution of the
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Figure 22. Evolution of the long time scale Te in the different tubes: �, tube 2;
�, tube 4; �, tube 5.

period T ≡ 2π
√

M/k:

T = 2π
L√

γP0/ρ

(
1 − z̄i

L

)
. (5.1)

This simple evaluation of the period is represented by the solid line in figure 23(a).
The order of magnitude of the period is correct, as well as the linear evolution
with the interface location. However, we see that the difference between this linear
evaluation and the measurements increases as the mass of the liquid decreases. It is
necessary to include both the effect of the acceleration of the liquid due to the hole
and the effect of the nonlinear terms to correct the simple evaluation of the period
given by (5.1).

In tube 5, the period T is also a decreasing function of the interface location and
is presented in figure 23b. This decrease is not linear. If we apply the spring–mass
analogy to this configuration, we find the rigidity k ≡ γP0S/ (L − z̄i) and the mass
M ≡ ρSLc. The period T ≡ 2π

√
M/k is then:

T = 2π
L√

γP0/ρ

√
Lc

L

√
1 − z̄i

L
. (5.2)

This linear evaluation is represented by the solid line in figure 23(b). The order of
magnitude and the tendency are again consistent with the measurements.
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Figure 23. Evolution of the short time scale T in the different tubes: (a) tube n◦4:
� d = 12.4mm, � d = 13.5 mm, � d = 15.35 mm, � d = 20.1mm, the solid bold line represent
the period derived from the spring-mass analogy (5.1); (b) tube n◦5: � d = 11.7 mm,
� d = 12.4 mm, � d = 13.5 mm, � d = 20.1mm. the solid bold line represent the period derived
from the spring-mass analogy (5.2).

6. Conclusion
We report the study of the glug-glug of the bottle, idealized as a vertical cylinder of

diameter D0, length L and open through a thin-walled hole of diameter d . We show
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that the phenomenon is characterized by two distinct time scales: the long time scale
of emptying Te and the short time scale of the oscillation T .

On the long time scale, the phenomenon is continuous and the characteristic time
can be evaluated by an extension of the propagation time of long bubbles. We show
that:

Te ∼ L√
gD0

(
D0

d

)5/2

.

On the short time scale, the interface oscillates around a mean position z̄i . We first
show that the physical origin of the oscillations lies in the compressibility of the
surrounding gas. In a second stage, we demonstrate that the oscillations can be
modelled to first order by a spring–mass analogy and find:

T =
L√

γP0/ρ
Φ(z̄i/L).

The function Φ (z̄i/L) depends on the configuration. This linear approximation holds
provided the diameter of the hole is not too small and provided the mass of liquid
which oscillates does not vanish. In these latter cases, the acceleration of the liquid at
the hole must be accounted for as well as nonlinear terms that arise in the oscillations.
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